Chap 4. Principal Components Analysis

History

- First introduced by Karl Pearson (1901) in Philosophical Magazine as a procedure for finding lines and planes which best fit a set of points in p-dimensional space. The focus was on geometric optimization.

Basic Idea

- The general objectives are
\checkmark Dimension reduction
\checkmark Interpretation of data

Reduce the dimensionality of a data set in which there is a large number of inter-related variables while retaining as much as possible the variation in the original set of variables.
The reduction is achieved by transforming the original variables to a new set of variables, "principal components, that are uncorrelated and ordered such that the first few retains most of the variation present in the data.

Goals \& Objectives

- Reduction and summary \longrightarrow data reduction.
- Study the structure of $\boldsymbol{\Sigma}$ (or \mathbf{S} or $\mathbf{R}) \longrightarrow$ Interpretation.

Applications

- Interpretation (study structure)
- Create a new set of variables (a smaller number that are uncorrelated). These can be used in other procedures (e.g., multiple regression).
- Select a sub-set of the original variables to be used in other multivariate procedures.
- Detect outliers or clusters of observations.
- Check multivariate normality assumption (before assuming multivariate normality and analyzing data using procedures that assume multivariate normality.
- Algebraically, principal components are particular uncorrelated linear combinations of the p random variables $X_{1}, X_{2}, \cdots, X_{p}$.
- Geometrically, principal components represent the selection of a new coordinate system obtained by rotating the original system with $X_{1}, X_{2}, \cdots, X_{p}$ as the coordinate axes.

Figure 8.4, Johnson and Wichern (2007)

- PCs represent a selection of a new coordinate system obtained by rotating the original axes to a set of new axes (to provide a simpler structure).
- The first principal component represents the direction of maximum variability.
- The second principal component represents the direction of maximum variability that is orthogonal to the first.
- And so on, until the last PC which represents the direction of minimum variability \& orthogonal to all of the others.

4.2 Definition and Derivation of PC's

Matrix Algebra - REvisions

- Principal components represent the directions with maximum variability and provide a simpler and more parsimonious description of the covariance structure.

$$
\underset{\sim}{x}=\underset{\sim}{Y}-\underset{\sim}{\mu}
$$

Let the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \cdots, X_{p}\right)^{\prime}$ have the covariance matrix $\boldsymbol{\Sigma}$ with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$, and $E(\underset{\sim}{X})={\underset{\sim}{\sim}}^{X}$

$$
\begin{aligned}
& Y_{1}=\mathbf{a}_{1}^{\prime} \mathbf{X}=a_{11} X_{1}+a_{12} X_{2}+\cdots+a_{1 p} X_{p} \quad \operatorname{v\Omega }\left(Y_{1}\right)= \\
& \dot{Y}_{2}=\mathbf{a}_{2}^{\prime} \mathbf{X}=a_{21} X_{1}+a_{22} X_{2}+\cdots+a_{2 p} X_{p} \quad=\operatorname{vr}(\underset{\sim}{a} \underset{\sim}{\top})=
\end{aligned}
$$

$$
\begin{aligned}
& Y_{p}=\mathbf{a}_{p}^{\prime} \mathbf{X}=a_{p 1} X_{1}+a_{p 2} X_{2}+\cdots+a_{p p} X_{p} \\
& \Downarrow \\
& {\underset{\sim}{a}}_{1}^{\top} \sum_{\sim}{\underset{\sim}{a}}_{1} \\
& \operatorname{Var}\left(Y_{i}\right)=\mathbf{a}_{i}^{\prime} \boldsymbol{\Sigma} \mathbf{a}_{i} \quad \operatorname{Cov}\left(Y_{i}, Y_{k}\right)=\mathbf{a}_{i}^{\prime} \boldsymbol{\Sigma} \mathbf{a}_{k} \\
& \operatorname{VCR}\left(\underset{\sim}{a_{i}^{\top}} \underset{\sim}{x}\right)={\underset{\sim}{a}}_{i}^{\top} \operatorname{Var}(\underset{\sim}{x}){\underset{\sim}{a}}_{i} \\
& \cos \left({\underset{\sim}{a}}_{i}^{\top} \underset{\sim}{x}, a_{k}^{\top} \underset{\sim}{x}\right)= \\
& ={\underset{\sim}{a}}_{i}^{\top} \sum_{\sim} a_{i} \\
& ={\underset{\sim}{a}}_{i}^{\top} \underbrace{\operatorname{cov}(x, x)}_{\operatorname{von}(\underline{x})}{\underset{\sim}{x}}^{\top}={\underset{\sim}{a}}_{i}^{\top} \sum_{\sim}^{a}{\underset{\sim}{c}}_{k}
\end{aligned}
$$

Principal components

$$
\begin{aligned}
\text { 1st } \mathrm{PC}= & \text { linear combination } \mathbf{a}_{1}^{\prime} \mathbf{X} \text { that maximizes } \operatorname{Var}\left(\mathbf{a}_{1}^{\prime} \mathbf{X}\right) \\
& \text { s.t. } \quad \mathbf{a}_{1}^{\prime} \mathbf{a}_{1}=1
\end{aligned}
$$

and PC $=$ linear combination $\mathbf{a}_{2}^{\prime} \mathbf{X}$ that maximizes $\operatorname{Var}\left(\mathbf{a}_{2}^{\prime} \mathbf{X}\right)$

$$
\text { s.t. } \quad \mathbf{a}_{2}^{\prime} \mathbf{a}_{2}=1 \text { and } \operatorname{Cov}\left(\mathbf{a}_{1}^{\prime} \mathbf{X}, \mathbf{a}_{2}^{\prime} \mathbf{X}\right)=0
$$

At the i th step,

$$
\begin{aligned}
i \text { th } \mathrm{PC}= & \text { linear combination } \mathbf{a}_{i}^{\prime} \mathbf{X} \text { that maximizes } \operatorname{Var}\left(\mathbf{a}_{i}^{\prime} \mathbf{X}\right) \\
& \text { s.t. } \quad \mathbf{a}_{i}^{\prime} \mathbf{a}_{i}=1 \text { and } \operatorname{Cov}\left(\mathbf{a}_{i}^{\prime} \mathbf{X}, \mathbf{a}_{k}^{\prime} \mathbf{X}\right)=0, \text { for } k<i
\end{aligned}
$$

$$
\operatorname{Var}(\underset{\sim}{a} \underset{\sim}{x})=a_{\sim}^{\top} \underset{\sim}{a}
$$

Principal components - Result 1:
Let the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \cdots, X_{p}\right)^{\prime}$ have the covariance matrix $\boldsymbol{\Sigma}$ with eigenvalue-eigenvector pairs $\left(\lambda_{1}, \gamma_{\sim} 1\right),\left(\lambda_{2}, \gamma_{\sim}\right), \ldots,\left(\lambda_{p},{\underset{\sim}{\gamma}}_{\gamma}\right)$ where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$. Then, the i th principal component is

$$
Y_{i}=\underset{\sim i}{\gamma_{i}^{\prime}} \mathbf{X}=\gamma_{i 1} X_{1}+\gamma_{i 2} X_{2}+\cdots+\gamma_{i p} X_{p}, \quad i=1,2, \ldots, p
$$

and
(1) $\operatorname{Var}\left(Y_{i}\right)=\underset{\sim}{\gamma} \underset{\sim}{\prime} \boldsymbol{\Sigma}{\underset{\sim}{\gamma}}_{i}=\lambda_{i}$ for $i=1,2, \ldots, p \left\lvert\, \begin{aligned} & \operatorname{Vm}\left(\varphi_{i}\right)= \\ & \operatorname{Va}\left({\underset{\sim}{\gamma}}_{i}^{\top} \underset{\sim}{X}\right)=\end{aligned}\right.$
(2) $\operatorname{Cov}\left(Y_{i}, Y_{k}\right)=\underset{\sim}{\underset{\gamma}{\gamma}} \underset{i}{\boldsymbol{\Sigma}} \underset{\sim}{\gamma} k=0$ for $i \neq k$
obs: ${\underset{\sim}{\gamma}}_{\gamma}^{\gamma} \gamma_{i}=1$ and ${\underset{\sim}{\gamma}}_{\underset{\sim}{\gamma}}^{\sim} \gamma_{k}=0$

$$
\begin{aligned}
\stackrel{\sim}{\sim}_{i}^{\gamma} \underbrace{\sim}_{\lambda_{i}^{\gamma}}{\underset{\sim}{r}}_{\gamma}^{\gamma} & =\lambda_{i} \underbrace{\gamma_{i}^{\top} \gamma} \\
& =\lambda_{i}^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nom }=1 \\
& \underset{\sim}{\sim} \underset{\sim}{\gamma}=\lambda \underset{\sim}{\gamma} \\
& \gamma_{\sim} \perp_{\sim} \gamma_{k} \text { athogonal } \\
& \text { vectors } \\
& Y_{i}=\gamma_{\sim}^{\gamma} \stackrel{\gamma_{\sim}^{d}}{X} \quad \int Y_{i}=\gamma_{\sim i}^{T}\left(X_{\sim}-\mu_{\sim}^{\mu}\right)
\end{aligned}
$$

Prove:

$$
\begin{aligned}
\frac{\mathbf{a}^{\prime} \boldsymbol{\Sigma}_{X} \mathbf{a}}{\mathbf{a}^{\prime} \mathbf{a}} & =\operatorname{var}\left(Y_{1}\right) \\
\mathbf{a}^{\prime} \boldsymbol{\Sigma}_{X} \mathbf{a} & =\operatorname{var}\left(Y_{1}\right) \mathbf{a}^{\prime} \mathbf{a} \\
\mathbf{a}^{\prime} \boldsymbol{\Sigma}_{X} \mathbf{a}-\operatorname{var}\left(Y_{1}\right) \mathbf{a}^{\prime} \mathbf{a} & =0 \\
\mathbf{a}^{\prime}\left(\boldsymbol{\Sigma}_{X} \mathbf{a}-\operatorname{var}\left(Y_{1}\right) \mathbf{a}\right) & =0 \quad(\text { since } \mathbf{a} \neq 0) \\
\boldsymbol{\Sigma}_{X} \mathbf{a}-\operatorname{var}\left(Y_{1}\right) \mathbf{a} & =0 \\
\underbrace{\boldsymbol{\Sigma}_{X}}_{p \times p} \underbrace{\mathbf{a}}_{p \times 1} & =\underbrace{\operatorname{var}\left(Y_{1}\right)}_{\text {scalar }} \underbrace{\mathbf{a}}_{p \times 1}
\end{aligned}
$$

which is just the equation what eigenvalues and eigenvectors solve.
So, $Y_{1}={\underset{\sim}{\gamma}}^{\top} i \underset{\sim}{X}$ where ${\underset{\sim}{r}}_{i}$ is the i-th eigenvector of $\underset{\sim}{\underset{\sim}{\Sigma}}$.

$$
\operatorname{cov}\left(y_{i}, \tilde{y}_{i}\right)=
$$

(1)

$$
\begin{aligned}
& \operatorname{VCR}\left(Y_{i}\right)=\operatorname{VCR}\left({\underset{\sim}{\gamma}}_{i}^{\top} \underset{\sim}{x}\right)={\underset{\sim}{\gamma}}_{i}^{T} \operatorname{VCR}(\underset{\sim}{X}){\underset{\sim}{i}}_{i}= \\
& =\gamma_{i}^{\gamma} \underbrace{\sum_{\sim}^{\gamma}}_{\lambda_{i} \gamma_{\sim}^{\gamma}} \underset{\sim}{\gamma}=\lambda_{i}{\underset{\sim}{\gamma}}^{\gamma}{\underset{\sim}{\gamma}}^{\gamma_{i}}=\lambda_{i}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& Y_{i} \text { and } \gamma_{k} \text { ane unconmelated. } \\
& {\underset{\sim}{i}}_{\gamma_{i}}^{\top} \gamma_{\sim_{i}}=1 \\
& {\underset{\sim}{r}}_{\underset{\sim}{r}}^{\underset{\sim}{\gamma}} \underset{K}{ }=0
\end{aligned}
$$

Thus, the PC's are uncorrelated and have variance equal to the eigenvalues of the covariance matrix.
Obs:

1. If some eingenvalues are equal the choice of the corresponding eigenvectors are not unique => Pc's is not unique;
2. If $Y_{i}={\underset{\sim i}{r}}_{i}^{\top} \underset{\sim}{x}$ is the i-th P.e. the $Y_{i}^{*}=-\underset{\sim}{\gamma}{ }_{i}^{\top} \underset{\sim}{x}$ is also a Pe. Since $\left(-{\underset{\sim}{r}}_{\top}^{\top}\right)\left(-{\underset{\sim}{r}}^{r}\right)=1$ and $\operatorname{var}\left(-{\underset{\sim}{r}}_{i}^{\top} \underset{\sim}{x}\right)=\operatorname{ver}\left({\underset{\sim}{r}}_{i}^{\top} \underset{\sim}{x}\right)=\lambda_{i}$
4.3 Properties of PC+ 4.4 Geometric properties of PC

Principal components - Result 2 :
Let the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \cdots, X_{p}\right)^{\prime}$ have the covariance matrix $\boldsymbol{\Sigma}$ with eigenvalue-eigenvector pairs $\left(\lambda_{1}, \gamma_{1}\right),\left(\lambda_{2}, \gamma_{2}\right), \ldots,\left(\lambda_{p}, \Re_{p}\right)$ where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$. Let $Y_{1}=\underset{\sim}{\gamma_{1}^{\prime}} \mathbf{X}, Y_{2}=\underset{\sim}{\gamma_{2}^{\prime}} \mathbf{X}, \cdots, Y_{p}=\underset{\substack{\boldsymbol{r}_{p}^{\prime}}}{ } \mathbf{X}$ be the principal components. Then

$$
\sigma_{11}+\cdots+\sigma_{p p}=\sum_{i=1}^{p} \operatorname{Var}\left(X_{i}\right)=\lambda_{1}+\cdots+\lambda_{p}=\sum_{i=1}^{p} \operatorname{Var}\left(Y_{i}\right)
$$

Prove:
Matrix Notation:

$$
\underset{\sim}{Y}=\Gamma_{\sim}^{\top} \underset{\sim}{x} \text { where } \underset{\sim}{\Gamma}=\left[\begin{array}{cccc}
\gamma_{11} & \gamma_{21} & \cdots & \gamma_{p 1} \\
\vdots & \vdots & i \\
\gamma_{1 p} & \gamma_{2 p} & \ldots & \gamma_{p p}
\end{array}\right]
$$

T~ matrix: the colums ane the eigenvectors of $\sum_{\sim}(\underset{\sim}{T}$ is an orthogonal matrix x)

$$
\stackrel{\perp}{\sim}=\left[\begin{array}{ccc}
\sigma_{1}^{2} \sigma_{12} & \cdots & \sigma_{1 p} \\
\sigma_{12} & \sigma_{2}^{2} & \ldots \\
\vdots & & \ddots \\
& & \sigma_{p}^{2}
\end{array}\right]
$$

not diognal

$$
\underbrace{\operatorname{Ln}(\Sigma)}_{\sim}=\sigma_{1}^{2}+\cdots+\sigma_{p}^{2}
$$

tortul verience of $\underset{\sim}{\sim}$?

$$
\underbrace{\operatorname{tn}(\underbrace{\sim}_{\sim})}_{\text {tothe veriance }}=\lambda_{1}+\cdots+\lambda_{p}
$$ of $\underset{\sim}{\psi}$

totel verionce of $\underset{\sim}{X}=$ totul caionce of $\underset{\sim}{\sim}$

$$
\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma^{2}=\lambda_{1}+\cdots+\lambda_{p}
$$

Covcriance Matu'x:

$$
\sum_{\sim}={\underset{\sim}{\sim}}_{\underset{\sim}{\sim}}^{\sim}
$$

symmetric mertix

$$
\begin{aligned}
& \operatorname{Tr}\left(\sum_{\sim}\right)=T_{n}\left(T_{\sim} n_{\sim}^{N} \Gamma_{\sim}^{T}\right)= \\
& =\operatorname{Tr}(\underset{\sim}{\sim} \underbrace{\Gamma}_{\sim}{\underset{\sim}{\sim}}_{\sim}^{\Gamma})=\operatorname{Tr}\left(n_{\sim}^{\sim}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\underset{\sim}{x}}{\sim} \rightarrow \operatorname{Var}(\underset{\sim}{x})=\sum_{\sim}^{\infty} \text { bisser }
\end{aligned}
$$

$$
\operatorname{VCR}(\underset{\sim}{Y})=\operatorname{VCR}\left(\underset{\sim}{\Gamma}{ }_{\sim}^{\top} \underset{\sim}{X}\right)={\underset{\sim}{T}}^{\top} \operatorname{VCR}(\underset{\sim}{X}) \underset{\sim}{T}={\underset{\sim}{T}}^{\top} \sum_{\sim}^{T}{\underset{\sim}{T}}^{T}
$$

using the spectacle decomposition of Σ
$\sum_{\sim}=\underset{\sim}{r} \underset{\sim}{\sim} \Gamma_{\sim}^{\top}$, we have that

$$
\begin{aligned}
& =\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \\
& & \lambda_{p}
\end{array}\right] \\
& \operatorname{var}(\underset{\sim}{x})=\underset{\sim}{\sum}
\end{aligned}
$$

total voriance of $\underset{\sim}{X}=\operatorname{tr}\left(\sum\right)$

$$
\operatorname{tn}(\tau)=\operatorname{Tn}\left[\begin{array}{ccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots \\
\sigma_{1 p} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots \\
\vdots & \vdots & \\
\sigma_{2 p} \\
\vdots & & \sigma_{p}^{2}
\end{array}\right]=\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots \sigma_{p}^{2}
$$

Total variance of $\underset{\sim}{\psi}=\operatorname{Tr}(\underset{\sim}{\sim})$

$$
\operatorname{Tn}(\underset{\sim}{\sim})=\lambda_{1}+\cdots+\sim \lambda_{p}
$$

Bert:

$$
\left.\begin{array}{rl}
\operatorname{Tr}(\underset{\sim}{\Sigma}) & =\operatorname{TR}\left(\underset{\sim}{\Gamma} \underset{\sim}{\sim} \Gamma_{\sim}^{\top}\right. \\
& =\operatorname{Tr}(\underset{\sim}{\sim})=\lambda_{1}+(\underbrace{\Gamma}_{\sim} \underbrace{\Gamma}_{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}
\end{array}\right)=
$$

Generalized variance of $x=\left|\sum_{\sim}\right|$

$$
\begin{aligned}
& \left|\underset{\sim}{\sum}\right|=\left|\underset{\sim}{\Gamma} \underset{\sim}{\sim} \underset{\sim}{\underset{\sim}{~}}{ }^{\top}\right|=|\underset{\sim}{\underset{\sim}{i}}||\underset{\sim}{\sim}||\underset{\sim}{\underset{\sim}{T}}|=|\underset{\sim}{\sim}| \\
& \text { commutativity } \quad|\underset{\sim}{i}|= \pm 1
\end{aligned}
$$

So, $\left|\sum_{\sim}\right|=|\underset{\sim}{\sim}|=\lambda_{1} \times \lambda_{2} \times \ldots \times \lambda_{p}$
thus, the PC's has the same to tue and generalized variance as the original vaniables (X^{\prime} s)

Proportion of total population variance due to k th principal component

$$
\underbrace{\frac{\lambda_{k}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{p}}}, \quad k=1,2, \ldots, p
$$

Remark: If most (for instance, 80 to 90%) of the total population variance, for large p, can be attributed to the first several principal components, then these components can "replace" the original p variables without much loss of information.

- The magnitude of $\gamma_{i k}$ measures the importance of the k th variable to the i th principal component, irrespective of the other variables.

$$
\begin{aligned}
& \rho_{Y_{i, X_{k}}}=\frac{\gamma_{i k} \sqrt{x_{i}}}{\sigma_{x_{k}}} \\
& \rho Y_{i, X_{k}}=\frac{\operatorname{cov}\left(Y_{i}, X_{k}\right)}{\sigma_{\tau_{i}}-\sigma_{X_{k}}} \\
& \operatorname{Cov}\left(\psi_{i}, x_{k}\right) \\
& \underset{\sim}{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
\frac{x_{k}}{1} \\
\vdots \\
x_{p}
\end{array}\right] \\
& \underset{\sim}{\gamma} \underset{\sim}{x} \underset{\sim}{x} \\
& \underset{K \text {-porition }}{\stackrel{e}{\sim}}=\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
0 \\
\vdots
\end{array}\right] \\
& { }_{\sim}^{Q^{\top}} \underset{\sim}{X}=X_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda i \underbrace{\overbrace{k}^{T} \gamma_{i} \gamma_{i}}_{\substack{k-\text { component } \\
\text { of ector } \gamma_{i}}}=\lambda_{i} \gamma_{i k}
\end{aligned}
$$

$$
\frac{\operatorname{cov}\left(y_{i}, x_{k}\right)}{\sigma_{x_{k}} \sigma_{y_{i}}}=\frac{\lambda_{i} \gamma_{i k}}{\sigma_{x_{k}} \sqrt{\lambda_{i}}}=\frac{\gamma_{i k} \sqrt{\lambda_{i}}}{\sigma_{k}}
$$

Principal components -ResulT 3:
Let $Y_{1}={\underset{\gamma}{1}}_{\prime}^{\prime} \mathbf{X}, Y_{2}={\underset{\sim}{\gamma}}_{\prime}^{\prime} \mathbf{X}, \cdots, Y_{p}={\underset{\gamma}{\gamma}}_{\prime}^{\prime} \mathbf{X}$ be the principal components obtained from the covariance matrix $\boldsymbol{\Sigma}$. Then

$$
\rho_{Y_{i}, X_{k}}=\frac{\gamma_{i k} \sqrt{\lambda_{i}}}{\sqrt{\sigma_{k k}}}, \quad i, k=1,2, \ldots, p
$$

Prove:

$$
\begin{aligned}
& \text { LeT } \underset{\sim}{e}{ }_{k}^{\top}=(0,0, \ldots, 1,0, \ldots, 0) \\
& k \text {-position } \\
& X_{k}=\underset{\sim}{e} k_{\sim}^{\top} \underset{\sim}{x} ; Y_{i}=\underset{\sim}{\gamma}{ }_{i}^{\top} \underset{\sim}{x} \\
& \operatorname{Cov}\left(\underset{\sim}{x} k, Y_{i}\right)=\operatorname{cov}\left(\underset{\sim}{e} \underset{\sim}{T} \underset{\sim}{x},{\underset{r}{i}}_{\underset{\sim}{x} \underset{\sim}{x}}^{x}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\rho_{Y_{i}, X_{k}}=\frac{\operatorname{Cov}\left(X_{k}, Y_{i}\right)}{\sigma_{X_{k}} \sigma_{Y_{i}}}=\frac{\lambda_{i} \gamma_{i k}}{\sigma_{k} \sqrt{\lambda_{i}}}=\frac{\gamma_{i k} \sqrt{\lambda_{i}}}{\sigma_{k}}, ~
\end{array} \\
& i, k=1_{1 \ldots, p}
\end{aligned}
$$

- The coefficients $\gamma_{i k}$ and the correlations $\rho_{Y_{i}, X_{k}}$ can lead to different rankings as the measures of the importance of the variables to a given component. However, these rankings are often not appreciably different.
- In practice, variables with relatively large coefficients (in absolute value) tend to have relatively large correlations.
- It is suggested that both the coefficients and the correlations be examined to help interpret the principal components.

Example 1: Let $\underset{\sim}{X} \in \mathbb{R}^{2}$ with $\operatorname{Var}(\underset{\sim}{X})=\underset{\sim}{\sum}=\left[\begin{array}{ll}6 & 2 \\ 2 & 3\end{array}\right]$ obtain the Principal components. $E(\underset{\sim}{x})=\mu$
$\underset{\sim}{Y}=\underset{\sim}{\Gamma^{T}} \underset{\sim}{X} \Rightarrow$ obtain the eigenvalues and eigenvectors of \sum_{\sim}

1. Eigenvalues:
solution of $\left|\sum_{\sim}-\lambda \underset{\sim}{I}\right|=0 \Leftrightarrow\left|\begin{array}{cc}6-\lambda & 2 \\ 2 & 3-\lambda\end{array}\right|=0 \Leftrightarrow$

$$
\begin{gathered}
(6-\lambda)(3-\lambda)-4=0 \Leftrightarrow 18-6 \lambda-3 \lambda+\lambda^{2}-4=0 \Leftrightarrow \\
\lambda^{2}-9 \lambda+14=0 \Leftrightarrow \lambda=\frac{9 \pm \sqrt{81-54}}{2} \Leftrightarrow \lambda_{1}=\frac{9+5}{2} \vee \lambda_{2}=\frac{9-5}{2} \\
\Leftrightarrow \lambda_{1}=7 \text { and } \lambda_{2}=2
\end{gathered}
$$

2. Eigenvectors

$$
\begin{aligned}
& \text { dst: } \sum_{\sim} x_{1}=\lambda_{1} x \Leftrightarrow\left[\begin{array}{ll}
6 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right]=7\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right] \Leftrightarrow \\
& \left\{\begin{array} { l l }
{ 6 x _ { 1 1 } + 2 x _ { 1 2 } = 7 x _ { 1 1 } } \\
{ 2 x _ { 1 1 } + 3 x _ { 1 2 } = 7 x _ { 1 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{ll}
x_{11}=2 x_{12} & \begin{array}{l}
\text { select: } \\
\end{array} \\
& x_{12}=1 \wedge x_{11}=2 \\
&
\end{array}\right.\right. \\
& {\underset{\sim}{x}}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad\left\|{\underset{\sim}{x}}_{1}\right\|=\sqrt{2^{2}+1^{2}}=\sqrt{5} \quad \therefore{\underset{\sim}{r}}^{\gamma_{1}}=\left[\begin{array}{c}
2 / 5 \\
1 / \sqrt{5}
\end{array}\right]
\end{aligned}
$$

$2^{\text {nd }}: \sum_{\sim}^{x} \underset{\sim}{x}=\lambda_{2}{\underset{\sim}{x}}_{2} \Leftrightarrow$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
6 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{21} \\
x_{22}
\end{array}\right]=2\left[\begin{array}{l}
x_{21} \\
x_{22}
\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}
6 x_{21}+2 x_{22}=2 x_{21} \\
2 x_{21}+3 x_{22}=2 x_{22}
\end{array} \Leftrightarrow\right.} \\
& \left\{\begin{array}{l}
4 x_{21}=-2 x_{22} \Leftrightarrow x_{21}=\frac{1}{2} x_{22} \quad \text { select }: x_{22}=1 \cap x_{21}=-\frac{1}{2} \\
{\left[\begin{array}{l}
x_{21} \\
x_{22}
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right] \quad\left\|x_{22}\right\|=\sqrt{(1 / 2)^{2}+1^{2}}=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}}
\end{array}\right. \\
& \underset{\sim}{\gamma}=\left[\begin{array}{l}
\frac{-1 / 2}{\sqrt{5}} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{l}
-\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right] \quad \gamma_{22}^{\top} \quad \gamma_{\sim 1}=0 \\
& y_{1}=\frac{2}{\sqrt{5}}\left(x_{1}-\mu_{1}\right)+\frac{1}{\sqrt{5}}\left(x_{2}-\mu_{2}\right) \quad \operatorname{van}\left(y_{1}\right)=\lambda_{1}=7 \\
& y_{2}=-\frac{1}{\sqrt{5}}\left(x_{1}-\mu_{1}\right)+\frac{2}{\sqrt{5}}\left(x_{2}-\mu_{2}\right) \quad, \operatorname{van}\left(y_{2}\right)=\lambda_{2}=2
\end{aligned}
$$

Obs: $E\left(y_{1}\right)=E\left[\left(\frac{2}{\sqrt{5}} x_{1}-\frac{2}{\sqrt{5}} \mu_{1}\right)+\left(\frac{1}{\sqrt{5}} x_{2}-\frac{1}{\sqrt{5}} \mu_{2}\right)\right]$

$$
=0 \text { and } E\left(Y_{2}\right)=0
$$

If $E(\underset{\sim}{x})=\underset{\sim}{0}$ then $\left\{\begin{array}{l}Y_{1}=\frac{2}{\sqrt{5}} x_{2}+\frac{1}{\sqrt{5}} x_{2} \text { with } E\left(Y_{1}\right)=0 \\ Y_{2}=-\frac{1}{\sqrt{5}} x_{1}+\frac{2}{\sqrt{5}} x_{2} \text { with } E\left(Y_{2}\right)=0\end{array}\right.$

Example 2: $X \in \mathbb{R}^{3}$ with $E(\underset{\sim}{X})=0 ; \quad \underset{\sim}{\sim}=\left[\begin{array}{ccc}1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2\end{array}\right]$
with eigen values -vectors. with eigenvalues-vecturs:

$$
\begin{array}{ll}
\lambda_{1}=5.83 ; \underset{\sim}{r} \\
\lambda_{2}^{\top}=[0.383,-0.924,0] & \underset{\sim}{\gamma}=2.0 ; \\
\lambda_{2}^{\top}=[0.0,1] & \underset{\sim}{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\lambda_{3}=0.17 ;
\end{array}\right]
\end{array}
$$

the P.C's are:

$$
\begin{aligned}
& Y_{1}=\underset{\sim}{\gamma}{ }_{\sim}^{\top} \underset{\sim}{x}=0.383 x_{1}-0.924 x_{2} \\
& Y_{2}=\underset{\sim}{\gamma}{ }_{\sim}^{\top} \underset{\sim}{x}=x_{3} \\
& Y_{3}=\underset{\sim 3}{\gamma} \underset{\sim}{x}=0.924 x_{1}+0.383 x_{2}
\end{aligned}
$$

total variance of $\underset{\sim}{X}$

$$
\begin{aligned}
& =\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{3}= \\
& +R\left(\sum_{\sim}\right)=8
\end{aligned}
$$

the Random variable x_{3} is one of the P.e's because this veriable is not correlated with x_{1} and with x_{2} var $\left(a x_{1}+b x_{2}\right)=$

$$
\operatorname{var}\left(y_{1}\right)=\operatorname{var}\left(0.383 x_{1}-0.924 x_{2}\right)=0.383^{2} \operatorname{ver}\left(x_{1}\right)+0.924 \operatorname{var}\left(x_{2}\right)-
$$

$$
-2 \times 0.383 \times 0.924 \operatorname{cov}\left(x_{1}, x_{2}\right)=
$$

$$
=0.147 x_{1}+0.854 \times 5-0.708(-2)=5.83=\lambda_{1}
$$

$$
\operatorname{cov}\left(y_{1}, y_{2}\right)=\operatorname{cov}\left(0.383 x_{1}-0.924 x_{2}, x_{3}\right)=0.383 \operatorname{cov}\left(x_{1}, x_{3}\right)-
$$

$$
-0.924 \operatorname{cov}\left(x_{2}, x_{3}\right)=0.383 \times 0-0.924 \times 0=0
$$

$$
\therefore \quad \operatorname{cov}\left(a x_{1}+b x_{2}, x_{3}\right)=\operatorname{cav}\left(a x_{1}, x_{3}\right)+\operatorname{cov}\left(b x_{2}, x_{3}\right)
$$

$$
=a \cos \left(x_{1}, x_{3}\right)+b \cos \left(x_{2}, x_{3}\right)
$$

variance of Y :

$$
\operatorname{Vr}(\underset{\sim}{Y})=\underset{\sim}{\sim}=\left[\begin{array}{ccc}
5.83 & 0 & 0 \\
0 & 2.0 & 0 \\
0 & 0 & 0.17
\end{array}\right]+R(\underset{\sim}{\sim})=
$$

total veriance: of $\underset{\sim}{X}$ is the sane of the total variance of $\underset{\sim}{Y}$

$$
\operatorname{tn}\left(\sum_{\sim}\right)=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}=1+5+2=\lambda_{1}+\lambda_{2}+\lambda_{3}=5.83+2+0.17=8
$$

Congelation between Y_{1} and Y_{2} with the original variables (X^{\prime} s)

$$
\begin{aligned}
& \rho y_{1}, x_{1}=\frac{\gamma_{11} \sqrt{\lambda_{1}}}{\sigma_{1}}=\frac{0.383 \sqrt{5.83}}{1}=0.925 \\
& \rho y_{1}, x_{2}=\frac{\gamma_{12} \sqrt{\lambda_{1}}}{\sigma_{2}}=\frac{-0.924 \sqrt{5.83}}{\sqrt{5}}=-0.998 \\
& \rho y_{2}, x_{1}=\rho y_{2}, x_{2}=0 \text { and } \rho y_{2}, x_{3}=\frac{\sqrt{2}}{\sqrt{2}}=1
\end{aligned}
$$

Obs: the vicuble x_{2} is the one with greater contribution to the 1 st PC and also is the one move connelated with Y_{1}.

Principal Component Analysis
Principal components under normality - Geometric Interpretation
Suppose that $\mathbf{X} \sim N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$. Then, $\mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{x}=c^{2}$ is an origin-centered ellipsoid which has axes $\pm c \sqrt{\lambda_{i}} \underset{\sim}{\boldsymbol{\gamma}}, i=1,2, \ldots, p$, where the $\left(\lambda_{i},{\underset{\sim}{\gamma}}_{i}\right)$ are the eigenvalue-eigenvector pairs of $\boldsymbol{\Sigma}$. Moreover,

$$
\begin{aligned}
& c^{2}=\mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{x}=\frac{1}{\lambda_{1}}\left(\underset{\sim}{\gamma}{ }_{1}^{\prime} \mathbf{x}\right)^{2}+\frac{1}{\lambda_{2}}\left(\underset{\sim}{\gamma}{ }_{2}^{\prime} \mathbf{x}\right)^{2}+\cdots+\frac{1}{\lambda_{p}}(\underset{\sim}{\gamma} \underset{p}{\prime} \mathbf{x})^{2} \\
& =\frac{1}{\lambda_{1}} y_{1}^{2}+\frac{1}{\lambda_{2}} y_{2}^{2}+\cdots+\frac{1}{\lambda_{p}} y_{p}^{2}
\end{aligned}
$$

Figure 8.1, Johnson and Wichern (2007)
the PC's Lie in the directions of the axes of the constant density ellipsoid.
Prinuibue Comprents scores:

$$
\underset{\sim}{x}: E(\underset{\sim}{x})=\underset{\sim}{0}
$$

objects monks in the R.C. axes

$$
\operatorname{vor}(\underset{\sim}{x})={\underset{\tilde{q}}{ }}
$$

i-th object observations: $\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)$
i-th object on the $i j$-th Pie.

$$
y_{i j}=\gamma_{j 1} x_{i 1}+\gamma_{j 2} x_{i 2}+\cdots+\gamma_{j p} x_{i p}
$$

scone of the i-th object in the j-th P.C

Principal Component Analysis

Standardized principal components
Intend of using ${\underset{\sim}{x}}^{\top}=\left(x_{1}, \ldots, x_{p}\right)$ and $\operatorname{van}(\underset{\sim}{x})=\sum_{\sim}$ We can calculate P.C. from $z_{\sim}=\left(z_{1}, \ldots, z p\right)$, where

$$
z_{i}=\frac{x_{i}-\mu_{i}}{\sigma_{i}} i=1, \ldots, p \quad \operatorname{wn}(\underset{\sim}{z})=\rho
$$

Principal Component Analysis

$$
P_{c}=\left[\begin{array}{lll}
2 & \cdots & -1 \\
= & \ddots & \\
& \ddots & 1
\end{array}\right] \begin{gathered}
\operatorname{ta}\left(\rho_{\sim}\right)= \\
p
\end{gathered}
$$

Standardized principal components

$$
\stackrel{V^{1 / 2}}{\sim} \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right)
$$

Let $\mathbf{Z}=\left(V^{1 / 2}\right)^{-1}(\mathbf{X}-\boldsymbol{\mu})$. Then $E(\mathbf{Z})=\mathbf{0}$ and

$$
\operatorname{Cov}(\mathbf{Z})=\left(V^{1 / 2}\right)^{-1} \boldsymbol{\Sigma}\left(V^{1 / 2}\right)^{-1}=\boldsymbol{\rho}
$$

The i th principal component of $\mathbf{Z}=\left(Z_{1}, Z_{2}, \cdots, Z_{p}\right)^{\prime}$ is given by

$$
Y_{i}=\underset{\sim}{\gamma_{i}^{\prime}} \mathbf{Z}=\underset{\sim}{\underset{\gamma}{\gamma}} \underset{i}{\prime}\left(V^{1 / 2}\right)^{-1}(\mathbf{X}-\boldsymbol{\mu})
$$

and

$$
\sum_{i=1}^{p} \operatorname{Var}\left(Y_{i}\right)=\sum_{i=1}^{p} \operatorname{Var}\left(Z_{i}\right)=p, \quad \rho_{Y_{i}, Z_{k}}=\gamma_{i k} \sqrt{\lambda_{i}}
$$

where the $\left(\lambda_{i}, \widehat{\sim}_{i}\right)$ are the eigenvalue-eigenvector pairs of ρ
Remark: The eigenvalue-eigenvector pairs derived from $\boldsymbol{\Sigma}$ are, in general, not the same as the ones derived from ρ.

The PCs from $\boldsymbol{\Sigma}_{X}$ are not the same as PCs from
We'll look at a situation where standardization makes a difference
This will be the case when the scales of the X variables are (substantially or vastly) different and they are ont comparable.

Example 3: Consider the $\underset{\sim}{x} \in \mathbb{R}^{2}: E(\underset{\sim}{x})=\underset{\sim}{0}$ eaveriance Matrix and the correction Matrix

$$
\bar{\sim}=\left[\begin{array}{rr}
1 & 4 \\
4 & 100
\end{array}\right]
$$

$$
\beta_{\sim}=\left[\begin{array}{cc}
1 & 0.4 \\
0.4 & 1
\end{array}\right]
$$

the eifenvalue-eigencector pains from

$$
\begin{aligned}
& \underset{\sim}{\Sigma}:\left\{\begin{array}{l}
\lambda_{1}=100.16 ; \quad{\underset{\sim}{\lambda}}_{\top}^{\top}=[0.040 ; 0.999] \\
\lambda_{2}=0.84 ;{\underset{\sim}{\gamma}}_{2}=[0.999 ;-0.040]
\end{array}\right. \\
& \gamma_{\sim}:\left\{\begin{array}{l}
\lambda_{1}^{+}=1.4 ; \gamma_{\omega_{1}^{+}}^{\gamma^{\top}}=[0.707 ; 0.707] \\
\lambda_{2}^{+}=0.6 ;{\underset{\sim}{2}}^{\gamma_{2}}=[0.707 ;-0.707]
\end{array}\right. \\
& z_{1}=\frac{x_{1}-0}{\sigma_{1}}
\end{aligned}
$$

the P.e's are using

$$
\begin{aligned}
& \text { the P.e's ane using } \\
& \Sigma_{\sim}:\left\{\begin{array}{l}
Y_{1}=0.040 x_{1}+0.999 x_{2} \\
y_{2}=0.999 x_{1}-0.040 x_{2}
\end{array} \quad \rho:\left\{\begin{array}{l}
y_{1}^{+}=0.707 z_{1}+0.707 z_{2} \\
y_{2}^{*}=0.707 z_{1}-0.707 z_{2}
\end{array}\right.\right.
\end{aligned}
$$

- We see that x_{2} completely dominates the st P.e. of Σ this component Y_{1} explains $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}=\frac{100.16}{101}=0.992$ of the total variance of $\underset{\sim}{\sim}$
- In contrast, the variables z_{1} and z_{2} contribute equally to the pec's of for
In this case the 1st P.C. explains $\frac{\lambda_{1}}{p}=\frac{1.4}{2}=0.7$ of the total variance of the standardized variables (z)

$$
\begin{array}{r|r}
\rho y_{1} x_{1}=\frac{\gamma_{11} \sqrt{\lambda_{1}}}{\sigma_{1}}=0.04 \sqrt{100.16}=0.4 & \rho_{y_{1}, z_{1}}=\gamma_{11}^{*} \sqrt{\lambda_{i}^{*}}=0.707 \sqrt{1.4} \\
& =0.837 \\
\rho y_{1}, x_{2}=\frac{\gamma_{12} \sqrt{\lambda_{1}}}{\sigma_{2}}=\frac{0.999 \sqrt{100.16}}{10} \simeq 0.999 & \rho_{y_{1}}^{*} z_{2}=\gamma_{12}^{+} \sqrt{\lambda_{1}^{+}}=0.837
\end{array}
$$

we conclude that the relative \pm mpontence of the variables is affected by stendordization.
conclusion: the P.C's of $\underset{\sim}{z}$ differ from those of ρ the variables are often stendordiz-ed when they have different units or widely different scales.

4.5-Sample principal components

$$
\underset{\sim}{S}=\sum_{\sim}^{n} \quad \underset{\sim}{\mu}=\bar{\sim}
$$

Used to summarize the sample variation by PCs.
The Algebra is the same as in population principal components.

- $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ are n independent observations from a population with $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.
- $\overline{\mathbf{x}}_{p \times 1}=$ sample mean vector.
- $\mathbf{S}_{p \times p}=\left\{s_{i k}\right\}=$ sample covariance matrix.
- S has eigenvalue/vector pairs $\left(\hat{\lambda}_{1}, \hat{\boldsymbol{\gamma}}_{1}\right), \ldots,\left(\hat{\lambda}_{p}, \hat{\boldsymbol{\hat { N }}}_{p}\right)$ where $\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \cdots \geq \hat{\lambda}_{p}$.
- The ${ }^{\wedge}$ indicates these are estimates of population values.
- The $i^{\text {th }}$ sample principal component is given by

$$
\hat{\mathbf{y}}_{i}=\hat{\boldsymbol{\gamma}}_{i}^{\top} \mathbf{x}=\hat{\boldsymbol{\gamma}}_{i 1} x_{1}+\hat{\boldsymbol{\gamma}}_{i 2} x_{2}+\cdots+\hat{\boldsymbol{\gamma}}_{i p} x_{p}
$$

- The $i^{\text {th }} \mathrm{PC}$ sample variance $=\hat{\operatorname{var}}\left(\hat{y}_{i}\right)=\hat{\lambda}_{i}$ for $i=1, \ldots, p$.
- The PC sample covariances $=\operatorname{cov}\left(\hat{y}_{i}, \hat{y}_{k}\right)=0$ for all $i \neq k$.

Total sample variance $=\sum_{i=1}^{p} s_{i i}=\widehat{\lambda}_{1}+\widehat{\lambda}_{2}+\cdots+\widehat{\lambda}_{p}$

$$
\begin{aligned}
& r_{\widehat{y_{i}, x_{k}}}=\frac{\hat{\gamma}_{i k} \sqrt{\hat{\lambda}_{i}}}{\sqrt{s_{k k}}}, \quad i, k=1,2, \ldots, p \quad s_{i i}=s_{i}^{2} \\
& \hat{\rho} \hat{x}_{1} x_{k}=\Gamma \tilde{u}_{i,}, x_{k}
\end{aligned}
$$

Standardized sample principal components
Let $\mathbf{z}_{j}=D^{-1 / 2}\left(\mathbf{x}_{j}-\overline{\mathbf{x}}\right), j=1,2, \ldots, p$, be the standardized observations with covariance matrix $R=\left(D^{1 / 2}\right)^{-1} S\left(D^{1 / 2}\right)^{-1}$. Then, the i th sample principal component is given by

$$
\widehat{y}_{i}={\underset{\sim}{r}}_{i}^{\prime} \mathbf{z}=\widehat{\mathbf{r}}_{i 1} z_{1}+\widehat{\mathbf{v}}_{i 2} z_{2}+\cdots+\widehat{\mathbf{r}}_{i p} z_{p}, \quad i=1,2, \ldots, p
$$

where the $\left(\widehat{\lambda}_{i}, \widehat{\boldsymbol{\gamma}}_{i}\right)$ are the eigenvalue-eigenvector pairs of R with $\widehat{\lambda}_{1} \geq \widehat{\lambda}_{2} \geq \cdots \geq \widehat{\lambda}_{p} \geq 0$. Moreover,

$$
\begin{gathered}
\text { Sample variance }\left(\widehat{y}_{i}\right)=\widehat{\lambda}_{i}, \quad i=1,2, \ldots, p \\
\text { Sample covariance }\left(\widehat{y}_{i}, \widehat{y}_{k}\right)=0, \quad i \neq k
\end{gathered}
$$

$$
\text { Total standardized sample variance }=\operatorname{tr}(R)=p=\sum_{i=1}^{p} \quad \widehat{\lambda}_{i}
$$

$$
r_{\widehat{y}_{i}, z_{k}}=\widehat{\gamma}_{i k} \sqrt{\widehat{\lambda}_{i}}
$$

- the sample P.e based on $\underset{\sim}{S}$ ane not the sane of those based on $\underset{\sim}{R}$
- the viable ane often stendordized when they have different units and variances.

Interpretation of sample principal components

- PCs based on a sample of n p-dimensional observations are new variables specified by a rigid rotation of the original axes to a new orientation such that the directions of the axes in the new orientation have maximum variances in the sample.
- The rotation must be rigid since the new variables must be \perp.
- Directions of the new axes are based on \mathbf{S} (or \mathbf{R})

The centered sample principal components $\widehat{y}_{i}=\widehat{\sim}_{i}^{\prime}(\mathbf{x}-\overline{\mathbf{x}}), i=1,2, \ldots, p$, can be viewed as the result of translating the origin of the original coordinate system to $\overline{\mathrm{x}}$ and then rotating the coordinate axes until they pass through the scatter in the directions of maximum variance.

Geometry of Sample PC

The PCs are projections of observations onto the principal axes of the ellipsoids.
We can re-center the x 's, which also centers the \hat{y} 's; that is

$$
\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)=0 \longrightarrow \hat{y}_{i} \quad \text { has mean } 0
$$

Subtraction of \bar{x} only effects the mean and does not effect variances and covariance.

$$
\binom{x_{1}}{x_{2}} \underset{\text { shifif location }}{\longrightarrow}\binom{x_{1}-\bar{x}_{1}}{x_{2}-\bar{x}_{2}} \underset{\text { rigid rotatation }}{\longrightarrow}\binom{\hat{y}_{1}}{\hat{y}_{2}}
$$

The PCs are projections of observations onto the principal axes of the ellipsoids.

How Many Components to Retain ??

The number of principal components
How many principal components should be retained? (No definite answer)

- The amount of total sample variance explained;
- The relative sizes of the eigenvalues;
- The subject-matter interpretations of the components
\checkmark A useful visual aid to determining an appropriate number of principal components is a scree plot (the magnitude of an eigenvalue vs. its number).

Remark: A component associated with an eigenvalue near zero and, hence, deemed unimportant, may indicate an unsuspected linear dependency in the data.

A scree plot
The number of components is taken to be the point at which the remaining eigenvalues are relatively small and all about the same size.

Figure 8.2, Johnson and Wichern (2007)
Some possible rules for choosing the number of P.C'S:

* retain the first K PC's to explain $\simeq 80 \%-90 \%$ of the total variance;
- retain PC's with eifencalues $\geqslant \bar{\pi}=\frac{\sum_{i=1}^{b} \hat{\lambda}_{i}}{p}$ using the standardized variables $\bar{\lambda}=1$ Kaiser Rule : Keep components with $\bar{\lambda} \geqslant 1$

Graphing Principal Components

- Plots of the principal components can reveal suspect observations, as well as provide checks on the assumption of normality.
- Reveal suspect observations (outliers, influential observations).
- Check multivariate normality assumptions.
- Look for clusters.
- Provide insight into structure in the data.

Suspect Observations

- The first PCs can help reveal influential observations: those that contribute more to variances than other observations such that if we removed them the results change quite a bit.
- The last PCs can help to reveal outliers: those observations that are a typical of the data set; they're inconsistent with the rest of the data (could be miss-coded).

Graphing the principal components

- To help check the normal assumption, construct scatter diagrams for pairs of the first few principal components. Also, make Q-Q plots from the sample values generated by each principal components.
- Construct scatter diagrams and $\mathrm{Q}-\mathrm{Q}$ plots for the last few principal components. These help identify suspect observations.

(o)

Figure 8.5 and 8.6, Johnson and Wichern (2007)

PCA as a Preliminary to Other Analysis

PCA is often used in conjunction with other data and statistical procedures, including

- Multiple regression to overcome problems of multicollinearity (use PCs as independent/predictor variables) or to select a subset of the original variables.
- MANOVA
- Discriminant analysis: get a lower-dimensional "look" at structure in data.
- Cluster analysis: Scaling (ie., PCA) and clustering are often both used when concern is with finding groups of similar objects in a space.
P.C'S Explanation:
- Based on Loadings $(\underset{\sim}{r} i \rightarrow$ weights of variables $x^{\prime} s$)
- Based on connelations between PC's and the variables (x 's o $z^{\prime} s$)

Example 4. The weekly rates of return for five stocks listed on the New York Stock Exchange were determined for the period January 1975 through December 1976. Let $x_{1}, x_{2}, \ldots, x_{5}$ denote observed weekly rates of return for the five stocks. Then

$$
\bar{x}=[0.0054,0.0048,0.0057,0.0063,0.0037]^{\tau}
$$

and

$$
R=\left[\begin{array}{lllll}
1.000 & 0.577 & 0.509 & 0.387 & 0.462 \\
0.577 & 1.000 & 0.599 & 0.389 & 0.322 \\
0.509 & 0.599 & 1.000 & 0.436 & 0.426 \\
0.387 & 0.389 & 0.436 & 1.000 & 0.523 \\
0.462 & 0.322 & 0.426 & 0.523 & 1.000
\end{array}\right] \quad \text { Ditherzent }
$$

The eigenvalues and corresponding normalized eigenvectors of R are:

$$
\begin{array}{ll}
\text { nvalues and corresponding normalized eigenvectors of } R \text { are: } \\
\hat{\lambda}_{1}=2.857 & \hat{e}_{1}=[0.464,0.457,0.470,0.421,0.421]^{\tau} \\
\hat{\lambda}_{2}=0.809 & \hat{e}_{2}=[0.240,0.509,0.260,-0.526,-0.582]^{\tau} \\
\hat{\lambda}_{3}=0.540 & \hat{e}_{3}=[-0.612,0.178,0.335,0.541,-0.435]^{\tau} \\
\hat{\lambda}_{4}=0.452 & \hat{e}_{4}=[0.387,0.206,-0.662,0.472,-0.382]^{\tau} \\
\hat{\lambda}_{5}=0.343 & \hat{e}_{5}=[-0.451,0.676,-0.400,-0.176,0.385]^{\tau}
\end{array}
$$

Using the standardized variables, we obtain the first two sample principal components

$$
\begin{aligned}
& \hat{y}_{1}=\hat{e}_{1}^{\tau} \boldsymbol{z}=0.464 z_{1}+0.457 z_{2}+0.470 z_{3}+0.421 z_{4}+0.421 z_{5} \\
& \hat{y}_{2}=\hat{e}_{2}^{\tau} \boldsymbol{z}=0.240 z_{1}+0.509 z_{2}+0.260 z_{3}-0.526 z_{4}-0.582 z_{5}
\end{aligned}
$$

These components account for

$$
\left(\frac{\hat{\lambda}_{1}+\hat{\lambda}_{2}}{p}\right) \times 100 \%=73 \%
$$

of the total sample variance. The first component is an equally weighted sum, or "index", of the five stocks. This component might be called a market component. The second component represents a contrast between the first three stocks (which were chemical stocks) and the last two stocks (oil stocks). It might be called an industry component.

Example 5: \% of People employed is different T Industivies Dataset: $\left\{\begin{array}{c}26 \\ 3\end{array}\right.$
x_{1} ='pencent in manufacturing'
$x_{2}={ }^{\prime} \quad " \quad$ in senvices Industry'
$x_{3}={ }^{\prime}$, in social and personal services

$$
\begin{aligned}
& \underset{\sim}{\mathscr{L}}=\left[\begin{array}{rrr}
49.109 & 6.535 & 7.379 \\
& 20.933 & 17.876 \\
& 46.643
\end{array}\right] ; \begin{array}{l}
\text { with eigenvectors } \\
\text { and eigenvalues: }
\end{array} \\
& \hat{\gamma}_{r}^{\hat{\gamma}^{\top}}=(0.580 ; 0.396 ; 0.712) \quad \hat{\lambda}_{1}=62.62 \\
& {\underset{\sim}{\gamma}}^{\top}=(0.811 ;-0.207 ;-0.546) ; \hat{\lambda}_{2}=42.47 \\
& \hat{\gamma}_{3}^{\top}=(-0.069 ; 0.894 ;-0.442) ; \hat{\lambda}_{3}=11.60
\end{aligned}
$$

P. $C^{\prime} 5:$

$$
\begin{aligned}
& \tilde{y}_{1}=0.580\left(x_{1}-\bar{x}_{1}\right)+0.396\left(x_{2}-\bar{x}_{2}\right)+0.712\left(x_{3}-\bar{x}_{3}\right) \\
& \hat{y}_{2}=0.811\left(x_{1}-\bar{x}_{1}\right)-0.207\left(x_{2}-\bar{x}_{2}\right)-0.546\left(x_{3}-\bar{x}_{3}\right) \\
& \hat{y}_{3}=-0.069\left(x_{1}-\bar{x}_{1}\right)+0.894\left(x_{2}-\bar{x}_{2}\right)=0.442\left(x_{3}-\bar{x}_{3}\right) \\
& \operatorname{VU2}\left(\tilde{y}_{1}\right)=\tilde{\lambda}_{1}
\end{aligned}
$$

vorience explaired:

$$
f_{n}\left({\underset{\sim}{S}}^{\prime \prime}\right)=49.109+20.933+46.643
$$

connelations: $\quad r_{\hat{y}_{i, x}}=\frac{\hat{\gamma}_{i k} \sqrt{\hat{\lambda}_{i}}}{\rho_{k}}, i_{1, k}=1, \ldots, 3$

Possible Interpretation of P.C'S:

* \tilde{y}_{n} : all variables ane contributing to the lIst P.C. , it cloud be on overall percent employment in all Industries (global measure)
- \tilde{y}_{2} : Is a contrast between manufacturing $\left(x_{1}\right)$ with service $\left(x_{2}\right)$ and social $\left(x_{3}\right)$
- \hat{U}_{3} : Contrast between Industry $\left(X_{2}\right)$ and solime $\left(x_{3}\right)$

