Chap 4. Principal Components Analysis

History

» First introduced by Karl Pearson (1901) in Philosophical
Magazine as a procedure for finding lines and planes which
best fit a set of points in p-dimensional space. The focus was
on geometric optimization.

Basic Idea

e The general objectives are

v" Dimension reduction

v’ Interpretation of data

Reduce the dimensionality of a data set in which there is a large
number of inter-related variables while retaining as much as
possible the variation in the original set of variables.

The reduction is achieved by transforming the original variables to
a new set of variables, “principal components, that are
uncorrelated and ordered such that the first few retains most of the
variation present in the data.
Goals & Objectives

» Reduction and summary — data reduction.

» Study the structure of X (or S or R) — Interpretation.




Applications

» Interpretation (study structure)

» Create a new set of variables (a smaller number that are
uncorrelated). These can be used in other procedures (e.g.,
multiple regression).

» Select a sub-set of the original variables to be used in other
multivariate procedures.

» Detect outliers or clusters of observations.

» Check multivariate normality assumption (before assuming
multivariate normality and analyzing data using procedures
that assume multivariate normality.

e Algebraically, principal components are particular uncorrelated linear
combinations of the p random variables X, Xo,---, X,.

e Geometrically, principal components represent the selection of a new

coordinate system obtained by rotating the original system with
X1,Xo,--+-, X, as the coordinate axes.
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Figure 8.4, Johnson and Wichern (2007)



» PCs represent a selection of a new coordinate system obtained
by rotating the original axes to a set of new axes (to provide a
simpler structure).

» The first principal component represents the direction of
maximum variability.

» The second principal component represents the direction of
maximum variability that is orthogonal to the first.

» And so on, until the last PC which represents the direction of
minimum variability & orthogonal to all of the others.

4.2 Definition and Derivation of PC’s

MATRIX ALGEBRA - REVISIONS

e Principal components represent the directions with maximum variability
and provide a simpler and more parsimonious description of the covariance
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Principal components

Ist PC = linear combination a}X that maximizes Var(a}X)

st. ajla; =1

2nd PC = linear combination a5X that maximizes Var(a5X)
s.t. ajap =1 and Cov(a}X,a,X) =0

At the ith step,

ith PC = linear combination a;X that maximizes Var(a;X)
s.t. ala; =1 and Cov(a/X,a;,X) =0, fork < i.
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Principal components - Qe se|T 1«

Let the random vector X = (X, Xy, -+, X))’ have the covariance matrix
¥ with eigenvalue-eigenvector pairs (A1,31), (A2, 82), ..., (Ap, Bp) where
A1 > Ay > - > ), > 0. Then, the ith principal component is
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Prove . a’v}:xa

e = var( Y1)
a’Xxa = var(Y;)a'a
a’Xya—var(Y;)a'a = 0
a'(Xxa—var(Yi)a) = 0 (since a # 0)
Yya—var(Yi)a = 0
ZX a = var( Yl) a
NN NSNS
pxp Px1 scalar PX1

which is just the equation what eigenvalues and eigenvectors solve.
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Thus, the PC’s are uncorrelated and have variance equal

to the eigenvalues of the covariance matrix.

Obs:

1. If some eingenvalues are equal the choice of the
corresponding eigenvectors are not unique => PC’s is
not unique;
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4.3 Properties of PC+ 4.4 Geometric properties of PC

Principal components - Rocu\ T ¢

Let the random vector X = (X1, X», -+, X,)’ have the covariance matrix
3 with eigenvalue-eigenvector pairs (A1, ¥1), (A2, ¥2), ..., (Ap,%p) where
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Remark: If most (for instance, 80 to 90%) of the total population variance, for
large p, can be attributed to the first several principal components, then these
components can “replace” the original p variables without much loss of
information.

e The magnitude of Y, measures the importance of the kth variable to the ith
principal component, irrespective of the other variables.
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Principal components — ResunT 3

Let V1 =Y¥/X, Y2 =¥5X, .-+, ¥, =Y/ X be the principal components
obtained from the covariance matrix 3. Then
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o The coefficients ¥;;, and the correlations py, x, can lead to different rankings as
the measures of the importance of the variables to a given component. However,
these rankings are often not appreciably different.

e In practice, variables with relatively large coefficients (in absolute value) tend to
have relatively large correlations.

e It is suggested that both the coefficients and the correlations be examined to
help interpret the principal components.
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Principal Component Analysis
Principal components under normality - Georetue Inteefuslnbon

Suppose that X ~ N,(0,X). Then, x’¥7'x = ¢? is an origin-centered ellipsoid
which has axes e/ A Y;, i = 1,2,..., p, where the (i, Xi) are the
eigenvalue-eigenvector pairs of 3. Moreover,

2 Is—1 _ / 1 ! \2 1~/ 2
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Figure 8.1, Johnson and Wichern (2007)
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Principal Component Analysis
Standardized principal components
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Principal Component Analysis 1’
Standardized principal components No- d@o’% (T -- \@?>

Let Z = (V/2)"1(X — p). Then E(Z) = 0 and
Cov(Z) = (VA2 =p
The ith principal component of Z = (Z1, Zs, -+ , Zp) is given by
Y; =¥Z=1(V'*) " (X — )

and
f:l Var(Y;) = f=1 Var(Z;) = p, PY;,Z = Kik\/A_z'

where the (\;,%¥;) are the eigenvalue-eigenvector pairs of p

Remark: The eigenvalue-eigenvector pairs derived from 3 are, in general,
not the same as the ones derived from p.

The PCs from X x are not the same as PCs from @

We'll look at a situation where standardization makes a difference

This will be the case when the scales of the X variables are
(substantially or vastly) different and they are ont comparable.
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4.5-Sample principal components g -

Used to summarize the sample variation by PCs.
The Algebra is the same as in population principal components.

> X1,X2,...,Xp are n independent observations from a population
with ¢ and X.

> Xpx1 = sample mean vector.

> Spxp = {Sik} = sample covariance matrix.

» S has eigenvalue/vector pairs (5\1,7?1), e (3\,,,*?.,,) where
AM>ho > >4 " i

» The ~ indicates these are estimates of population values.

» The it" sample principal component is given by

N\ /\1 A\ N\ N
Yi = ¥iX ="¥1x1 + ¥i2Xx2 + -+ ¥ipXp

» The it" PC sample variance = vlsr(f/;) =\ fori=1,...,p.
» The PC sample covariances = cov(y;, yx) = 0 for all i # k.

Total sample variance =Y % ;s =X M +Xa+--+ X\
PR TSVEYI S 2
YTk = \/sgr yR=1,4,...,P -ALL: M



Standardized sample principal components

Let z, = D_1/2(xj —X), j=1,2,...,p, be the standardized observations
with covariance matrix R = (D'/2)~18(DY2)=1. Then, the ith sample
principal component is given by

@':éZZ@lZl +Ti2za+ -+ Bipzp, 1=1,2,...,p

where the (Xi,@-)Aare the eigenvalue-eigenvector pairs of R with
A1 > Ay > -+ > )\, > 0. Moreover,
Sample variance(y;) = Xi, 1=1,2,...,p
Sample covariance(y;, yx) =0, 1 # k

Total standardized sample variance = tr(R) =p =Y 7 _, i
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Interpretation of sample principal components

» PCs based on a sample of n p-dimensional observations are
new variables specified by a rigid rotation of the original axes
to a new orientation such that the directions of the axes in
the new orientation have maximum variances in the sample.

» The rotation must be rigid since the new variables must be L.
» Directions of the new axes are based on S (or R)

The centered sample principal components 7; = g;(x -X),i=1,2,...,p,
can be viewed as the result of translating the origin of the original
coordinate system to X and then rotating the coordinate axes until they
pass through the scatter in the directions of maximum variance.

Geometry of Sample PC

X2

f’zZifzx 1 -

X1

The PCs are projections of observations onto the principal axes of
the ellipsoids.

We can re-center the x's, which also centers the y's; that is
(xi —X) =0 — 9 has mean 0

Subtraction of X only effects the mean and does not effect
variances and covariance.

X1 — X1 — X1 — 1
X2 shift location X2 — )_(2 rigid rotatation _)/}2



The PCs are projections of observations onto the principal axes of
the ellipsoids.

~

N X2 — X2 n
Y2
=) o
o o, _
PO X1 — X1
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How Many Components to Retain 77

The number of principal components

How many principal components should be retained? (No definite answer)
e The amount of total sample variance explained;

e The relative sizes of the eigenvalues;

e The subject-matter interpretations of the components

v A useful visual aid to determining an appropriate number of principal
components is a scree plot (the magnitude of an eigenvalue vs. its
number).

Remark: A component associated with an eigenvalue near zero and,
hence, deemed unimportant, may indicate an unsuspected linear
dependency in the data.



A scree plot

The number of components is taken to be the point at which the remaining eigenvalues
are relatively small and all about the same size.
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Figure 8.2, Johnson and Wichern (2007)
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Graphing Principal Components

e Plots of the principal components can reveal suspect observations, as
well as provide checks on the assumption of normality.

» Reveal suspect observations (outliers, influential observations).
» Check multivariate normality assumptions.
Look for clusters.

v

v

Provide insight into structure in the data.

Suspect Observations

» The first PCs can help reveal influential observations: those
that contribute more to variances than other observations
such that if we removed them the results change quite a bit.

» The last PCs can help to reveal outliers: those observations
that are a typical of the data set; they're inconsistent with the
rest of the data (could be miss-coded).

Graphing the principal components

e To help check the normal assumption, construct scatter diagrams for
pairs of the first few principal components. Also, make Q-Q plots from the
sample values generated by each principal components.

e Construct scatter diagrams and Q-Q plots for the last few principal
components. These help identify suspect observations.
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Figure 8.5 and 8.6, Johnson and Wichern (2007)



PCA as a Preliminary to Other Analysis

PCA is often used in conjunction with other data and statistical
procedures, including

» Multiple regression to overcome problems of multicollinearity
(use PCs as independent/predictor variables) or to select a
sub-set of the original variables.

» MANOVA

» Discriminant analysis: get a lower-dimensional “look” at
structure in data.

» Cluster analysis: Scaling (i.e., PCA) and clustering are often
both used when concern is with finding groups of similar
objects in a space.
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Example 4. The weekly rates of return for five stocks listed on the New
York Stock Exchange were determined for the period January 1975 through
December 1976. Let 1, 2o, . .., x5 denote observed weekly rates of return for

the five stocks. Then
z =1[0.0054, 0.0048, 0.0057,0.0063, 0.0037]"
and

1.000 0.577 0.509 0.387 0.462
0.577 1.000 0.599 0.389 0.322

R= {0509 0599 1.000 0.436 0.426 Or el

0.387 0.389 0.436 1.000 0.523 .
Noham 3
0.462 0.322 0.426 0.523 1.000

- mn
The eigenvalues and corresponding normalized eigenvectors of R are: ”\ ) X
: — — €= ¥
A1 = 2.857 61 =0.464,0.457,0.470, 0.421, 0.421)" ~
o =0809 &y = [0.240, 0.509, 0.260, —0.526, —0.582]"
A3 =0.540 63 = [—0.612,0.178,0.335,0.541, —0.435]"
M=0452 &y = [0.387,0.206, —0.662, 0.472, —0.382]"

A5 =0.343 &5 = [—0.451,0.676, —0.400, —0.176, 0.385]"

Using the standardized variables, we obtain the first two sample principal
components

1 =eéjz =0.4642z; + 0.45729 + 0.47023 4+ 0.42124 + 0.4212;
U = e3z = 0.2402z; + 0.5092 + 0.26025 — 0.52624 — 0.5822;

These components account for

(;\14-5\2

) x 100% = 73%

of the total sample variance. The first component is an equally weighted

sum, or “index”, of the five stocks. This component might be called a market

component. The second component represents a contrast between the first
three stocks (which were chemical stocks) and the last two stocks (oil stocks).

It might be called an industry component.
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‘ (V\7'% l1’ - Y. Cuvm : < = X100
b i <) i ce erRained “fz-‘ e
N =1
1 62.62 g‘fh’—x'\()o‘/.:e:‘)‘ezxto@/.: 53 66
RERE S 116.63
2 42 4% 40,06
I 11. 60 100 -00
hae | 110, 63
(
o ( %): L8 09+ 20.932+46.643
~
,\
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/
I Pw
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Xe T\ N ] 62.6a%0.580 _ 0.35
> 4g.109
X 0,%9662.62 _ 4 6g
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206,933
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